Loizou, E., Karelakis, C., Galanopoulos, K. & Mattas, K. The role of agriculture as a development tool for a regional economy. Agric. Syst. 173, 482–490 (2019).
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).
Carpenter, S. R., Booth, E. G. & Kucharik, C. J. Extreme precipitation and phosphorus loads from two agricultural watersheds. Limnol. Oceanogr. 63, 1221–1233 (2018).
Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Zhang, J., Wang, S., Zhao, W., Meadows, M. E. & Fu, B. Finding pathways to synergistic development of Sustainable Development Goals in China. Humanit. Soc. Sci. Commun. 9, 21 (2022).
Searchinger, T. et al. Creating a Sustainable Food Future. World Resources Report 2013–14: Interim Findings (World Resources Institute, 2020).
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
Saleem, M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 8, e08905 (2022).
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Agricultural Model Intercomparison and Improvement Project (AgMIP) https://doi.org/10.15482/USDA.ADC/1212378 (2015).
Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).
Becker-Reshef, I., Justice, C., Whitcraft, A. K. & Jarvis, I. GEOGLAM: a GEO initiative on global agricultural monitoring. In IGARSS 2018 — 2018 IEEE International Geoscience and Remote Sensing Symposium 8155–8157 (2018).
Sellitti, S. Evaluation of CGIAR Platform for Big Data in Agriculture (CGIAR, 2021).
Yu, Q. et al. A cultivated planet in 2010 — part 2: the global gridded agricultural-production maps. Earth Syst. Sci. Data 12, 3545–3572 (2020).
Fischer, G. et al. Global Agro-Ecological Zones v4 — Model Documentation (IIASA/FAO, 2021).
Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000 — global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).
Weersink, A., Fraser, E., Pannell, D., Duncan, E. & Rotz, S. Opportunities and challenges for big data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 10, 19–37 (2018).
Global Review of Agricultural Census Methodologies and Results (2006–2015) World Programme for the Census of Agriculture 2010 (FAO, 2021).
FAOSTAT Statistical Database (FAO, 2024); https://www.fao.org/faostat/en/#data.
Conducting Agricultural Censuses and Surveys FAO Statistical Development Series No. 6) (Food and Agriculture Organization of the United Nations, 1996); https://www.fao.org/economic/the-statistics-division-ess/world-census-of-agriculture/conducting-of-agricultural-censuses-and-surveys/en/.
Statistical Office of the European Union (EUROSTAT, 2023); https://ec.europa.eu/eurostat.
Lahti, L., Huovari, J., Kainu, M. & Biecek, P. Retrieval and analysis of Eurostat open data with the eurostat package. The R Journal 9, 385–392 (2017).
World Programme For The Census Of Agriculture 2020 Vol. 1 (FAO, 2017).
Maria, D., Michele, M. & Felix, R. Development of a National and Sub-National Crop Calendars Data Set Compatible with Remote Sensing Derived Land Surface Phenology (European Union, 2018).
Fritz, S. et al. A comparison of global agricultural monitoring systems and current gaps. Agric. Syst. 168, 258–272 (2019).
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).
Becker-Reshef, I. et al. Crop type maps for operational global agricultural monitoring. Sci. Data 10, 172 (2023).
Kotsuki, S. & Tanaka, K. SACRA — a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI. Hydrol. Earth Syst. Sci. 19, 4441–4461 (2015).
Laborte, A. G. et al. RiceAtlas, a spatial database of global rice calendars and production. Sci. Data 4, 170074 (2017).
See, L. et al. Improved global cropland data as an essential ingredient for food security. Glob. Food Secur. 4, 37–45 (2015).
Global Strategy to Improve Agricultural and Rural Statistics: Report of the Friends of the Chair on Agricultural Statistics (World Bank, 2010).
Independent External Evaluation of the United Nations Food and Agricultural Organization (Food and Agricultural Organization of the United Nations, 2005); https://www.fao.org/3/J6667E/J6667E.pdf.
Independent External Evaluation of FAO’s Role and Work in Statistics (Food and Agriculture Organization of the United Nations, 2008); https://www.fao.org/3/bd418e/bd418e.pdf.
Iizumi, T. et al. Historical changes in global yields: major cereal and legume crops from 1982 to 2006. Glob. Ecol. Biogeogr. 23, 346–357 (2014).
Gangopadhyay, P. K., Shirsath, P. B., Dadhwal, V. K. & Aggarwal, P. K. A new two-decade (2001–2019) high-resolution agricultural primary productivity dataset for India. Sci. Data 9, 730 (2022).
Wilkinson, M. D. et al. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016).
Leff, B., Ramankutty, N. & Foley, J. A. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 18, GB1009 (2004).
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).
Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).
Lombardozzi, D. L., Bonan, G. B., Levis, S. & Lawrence, D. M. Changes in wood biomass and crop yields in response to projected CO2, O3, nitrogen deposition, and climate. J. Geophys. Res. Biogeosci. 123, 3262–3282 (2018).
Rolle, M., Tamea, S. & Claps, P. Improved large-scale crop water requirement estimation through new high-resolution reanalysis dataset. In EGU General Assembly (2020).
Fischer, G. et al. Global Agro-Ecological Zones (GAEZ v3.0) (FAO/IIASA, 2012).
Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).
Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).
Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
Kerner, H. et al. How accurate are existing land cover maps for agriculture in sub-Saharan Africa? Preprint at https://doi.org/10.48550/arXiv.2307.02575 (2023).
Meisner, J. et al. A time-series approach to mapping livestock density using household survey data. Sci. Rep. 12, 13310 (2022).
Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).
Gilbert, M. et al. Global Cattle Distribution in 2015 (5 Minutes of Arc) (Harvard Dataverse, accessed 11 July 2023); https://doi.org/10.7910/DVN/LHBICE.
Da Re, D. et al. Downscaling livestock census data using multivariate predictive models: sensitivity to modifiable areal unit problem. PLoS One 15, e0221070 (2020).
Nicolas, G. et al. Using random forest to improve the downscaling of global livestock census data. PLoS One 11, e0150424 (2016).
MacLeod, M. et al. Greenhouse Gas Emissions from Pig and Chicken Supply Chains: a Global Life Cycle Assessment (FAO, 2013).
Opio, C. et al. Greenhouse Gas Emission from Ruminant Supply Chains (FAO, 2013).
Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).
Robinson, T. P. et al. Global Livestock Production Systems (FAO and ILRI, 2011).
Kruska, R. L., Reid, R. S., Thornton, P. K., Henninger, N. & Kristjanson, P. M. Mapping livestock-oriented agricultural production systems for the developing world. Agric. Syst. 77, 39–63 (2003).
Seré Rabé, C. & Steinfeld, H. World Livestock Production Systems: Current Status, Issues and Trends (FAO, 1996).
Dixon, J. A., Gibbon, D. P. & Gulliver, A. Farming Systems and Poverty: Improving Farmers’ Livelihoods in a Changing World (FAO, 2001).
Hammond, J. et al. The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: description and applications in East Africa and Central America. Agric. Syst. 151, 225–233 (2017).
Zane, G. & Pica-Ciamarra, U. The contribution of livestock to household livelihoods in Tanzania and Uganda: measuring tradable and non-tradable livestock outputs. Trop. Anim. Health Prod. 53, 304 (2021).
Carletto, C. Better data, higher impact: improving agricultural data systems for societal change. Eur. Rev. Agric. Econ. 48, 719–740 (2021).
Carletto, C., Dillon, A. & Zezza, A. in Handbook of Agricultural Economics Vol. 5 (eds Barrett, C. B. & Just, D. R.) 4407–4480 (Elsevier, 2021).
Duncan, A. J., Lukuyu, B., Mutoni, G., Lema, Z. & Fraval, S. Supporting participatory livestock feed improvement using the Feed Assessment Tool (FEAST). Agron. Sustain. Dev. 43, 34 (2023).
Fritz, S. et al. A global dataset of crowdsourced land cover and land use reference data. Sci. Data 4, 170075 (2017).
The State of World Fisheries and Aquaculture (SOFIA) (Food and Agriculture Organization of the United Nations, 2022); https://www.fao.org/3/cc0461en/online/sofia/2022/world-fisheries-aquaculture.html.
Food and Agriculture Organization of the United Nations. Coordinating Working Party on Fishery Statistics (CWP) Handbook (FAO, 2020).
Fishery and Aquaculture Statistics. Global Production by Production Source 1950–2020 (FishStatJ) (Food and Agricultural Organization of the United Nations, 2022); https://www.fao.org/fishery/en/topic/166235?lang=en.
Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 170039 (2017).
Zeller, D. et al. Still catching attention: Sea Around Us reconstructed global catch data, their spatial expression and public accessibility. Mar. Policy 70, 145–152 (2016).
Pauly, D., Zeller, D. & Palomares, M.L.D. (eds) Sea Around Us Concepts, Design and Data (Sea Around Us, 2020); seaaroundus.org.
Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).
Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P. B. Global hidden harvest of freshwater fish revealed by household surveys. Proc. Natl Acad. Sci. 115, 7623–7628 (2018).
Ye, Y. et al. FAO’s statistic data and sustainability of fisheries and aquaculture: comments on Pauly and Zeller (2017). Mar. Policy 81, 401–405 (2017).
Klinger, D. H. et al. Moving beyond the fished or farmed dichotomy. Mar. Policy 38, 369–374 (2013).
Froehlich, H. E. et al. Piecing together the data of the US marine aquaculture puzzle. J. Environ. Manag. 308, 114623 (2022).
Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).
Ottinger, M., Bachofer, F., Huth, J. & Kuenzer, C. Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series. Remote Sens. 14, 153 (2021).
Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
Stehman, S. V. & Foody, G. M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 231, 111199 (2019).
Laso Bayas, J. C. et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Sci. Data 4, 170136 (2017).
Gourlay, S., Kilic, T. & Lobell, D. B. A new spin on an old debate: errors in farmer-reported production and their implications for inverse scale-productivity relationship in Uganda. J. Dev. Econ. 141, 102376 (2019).
Phelps, L. N. & Kaplan, J. O. Land use for animal production in global change studies: defining and characterizing a framework. Glob. Chang. Biol. 23, 4457–4471 (2017).
Lowder, S. K., Sánchez, M. V. & Bertini, R. Which farms feed the world and has farmland become more concentrated? World Dev. 142, 105455 (2021).
van Andel, M., Tildesley, M. J. & Gates, M. C. Challenges and opportunities for using national animal datasets to support foot‐and‐mouth disease control. Transbound. Emerg. Dis. 68, 1800–1813 (2021).
Abebe, R. et al. Narratives and counternarratives on data sharing in Africa. In Proc. 2021 ACM Conference on Fairness, Accountability, and Transparency 329–341 (2021).
Bradley, D. et al. Opportunities to improve fisheries management through innovative technology and advanced data systems. Fish Fish. 20, 564–583 (2019).
van Helmond, A. T. M. et al. Electronic monitoring in fisheries: lessons from global experiences and future opportunities. Fish Fish. 21, 162–189 (2020).
Seto, K. L. et al. Fishing through the cracks: the unregulated nature of global squid fisheries. Sci. Adv. 9, eadd8125 (2023).
Taconet, M. et al. Global Atlas of AIS-Based Fishing Activity: Challenges and Opportunities (FAO, 2019).
Welch, H. et al. Hot spots of unseen fishing vessels. Sci. Adv. 8, eabq2109 (2023).
Orofino, S., McDonald, G., Mayorga, J., Costello, C. & Bradley, D. Opportunities and challenges for improving fisheries management through greater transparency in vessel tracking. ICES J. Mar. Sci. 80, 675–689 (2023).
Shepperson, J. L. et al. A comparison of VMS and AIS data: the effect of data coverage and vessel position recording frequency on estimates of fishing footprints. ICES J. Mar. Sci. 75, 988–998 (2018).
Kroodsma, D. A. et al. Revealing the Global Longline Fleet with Satellite Radar (2022).
Park, J. et al. Illuminating dark fishing fleets in North Korea. Sci. Adv. 6, eabb1197 (2023).
Ottinger, M., Clauss, K. & Kuenzer, C. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data. Remote Sens. 9, 440 (2017).
Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).
Rotz, S. et al. The politics of digital agricultural technologies: a preliminary review. Sociol. Ruralis 59, 203–229 (2019).
Xu, Y. et al. Mapping aquaculture areas with multi-source spectral and texture features: a case study in the Pearl River basin (Guangdong), China. Remote Sens. 13, 4320 (2021).
Cochrane, K. (ed.) Illuminating Hidden Harvests: the Contributions of Small-Scale Fisheries to Sustainable Development (FAO, Duke Univ. & World Fish, 2023).
Halim, A. et al. Developing a functional definition of small-scale fisheries in support of marine capture fisheries management in Indonesia. Marine Policy 100, 238–248 (2018).
Smith, H. & Basurto, X. Defining small-scale fisheries and examining the role of science in shaping perceptions of who and what counts: a systematic review. Front. Mar. Sci. 6, 236 (2019).
Carletto, C., Jolliffe, D. & Banerjee, R. From tragedy to renaissance: improving agricultural data for better policies. J. Dev. Stud. 51, 133–148 (2015).
Agarwal, S., Singh, V. & Gandhi, R. Could a data sharing protocol be agriculture’s missing link? The Chicago Council on Global Affairs https://globalaffairs.org/commentary-and-analysis/blogs/could-data-sharing-protocol-be-agricultures-missing-link (2021).
Fisher, A. & Fukuda-Parr, S. Introduction — data, knowledge, politics and localizing the SDGs. J. Hum. Dev. Capab. 20, 375–385 (2019).
Montenegro de Wit, M. & Canfield, M. Feeding the world, byte by byte’: emergent imaginaries of data productivism. J. of Peasant Stud. https://doi.org/10.1080/03066150.2023.2232997 (2023).
Wolfert, S., Ge, L., Verdouw, C. & Bogaardt, M.-J. Big data in smart farming — a review. Agric. Syst. 153, 69–80 (2017).
Spanaki, K., Karafili, E. & Despoudi, S. AI applications of data sharing in agriculture 4.0: a framework for role-based data access control. Int. J. Inf. Manag. 59, 102350 (2021).
Brinkerhoff, D. W. & Brinkerhoff, J. M. Public–private partnerships: perspectives on purposes, publicness, and good governance. Public Adm. Dev. 31, 2–14 (2011).
Wiggins, S., Kirsten, J. & Llambí, L. The future of small farms. World Dev. 38, 1341–1348 (2010).
Jouanjean, M.-A., Casalini, F., Wiseman, L. & Gray, E. Issues Around Data Governance in the Digital Transformation of Agriculture: The Farmers’ Perspective (OECD, 2020).
Jensen, Ø., Dempster, T., Thorstad, E. B., Uglem, I. & Fredheim, A. Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquacult. Environ. Interact. 1, 71–83 (2010).
Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).
Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).
Barrett, C. B. et al. Bundling innovations to transform agri-food systems. Nat. Sustain. 3, 974–976 (2020).
Paliyam, M., Nakalembe, C., Liu, K., Nyiawung, R. & Kerner, H. Street2sat: a machine learning pipeline for generating ground-truth geo-referenced labeled datasets from street-level images. In ICML 2021 Workshop on Tackling Climate Change with Machine Learning (ICML, 2021).
Yan, Y. & Ryu, Y. Exploring Google Street View with deep learning for crop type mapping. ISPRS J. Photogramm. Remote Sens. 171, 278–296 (2021).
d’Andrimont, R., Yordanov, M., Martinez-Sanchez, L. & Van der Velde, M. Monitoring crop phenology with street-level imagery using computer vision. Comput. Electron. Agric. 196, 106866 (2022).
van der Merwe, D., Burchfield, D. R., Witt, T. D., Price, K. P. & Sharda, A. Drones in agriculture. Adv. Agron. 162, 1–30 (2020).
d’Andrimont, R. et al. Crowdsourced street-level imagery as a potential source of in-situ data for crop monitoring. Land 7, 127 (2018).
Kerner, H. R. et al. Phenological normalization can improve in-season classification of maize and soybean: a case study in the central US Corn Belt. Sci. Remote Sens. 6, 100059 (2022).
Wang, S. et al. Mapping crop types in southeast India with smartphone crowdsourcing and deep learning. Remote Sens. 12, 2957 (2020).
Tseng, G., Kerner, H., Nakalembe, C. & Becker-Reshef, I. Learning to predict crop type from heterogeneous sparse labels using meta-learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 1111–1120 (2021).
Muruganantham, P., Wibowo, S., Grandhi, S., Samrat, N. H. & Islam, N. A systematic literature review on crop yield prediction with deep learning and remote sensing. Remote Sens. 14, 1990 (2022).
Deines, J. M., Wang, S. & Lobell, D. B. Satellites reveal a small positive yield effect from conservation tillage across the US Corn Belt. Environ. Res. Lett. 14, 124038 (2019).
Ferrag, M. A., Shu, L., Yang, X., Derhab, A. & Maglaras, L. Security and privacy for green IoT-based agriculture: review, blockchain solutions, and challenges. IEEE Access 8, 32031–32053 (2020).
Rahman, M. U., Baiardi, F. & Ricci, L. Blockchain smart contract for scalable data sharing in IoT: a case study of smart agriculture. In 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT) 1–7 (IEEE, 2020).
Gobezie, T. B. & Biswas, A. Break barriers in soil data stewardship by rewarding data generators. Nat. Rev. Earth Environ. 4, 353–354 (2023).
Durrant, A. et al. The role of cross-silo federated learning in facilitating data sharing in the agri-food sector. Comput. Electron. Agric. 193, 106648 (2022).
UNSC. Spatial anonymization: guidance note for the Inter-Secretariat Working Group on Household Surveys. https://unstats.un.org/unsd/statcom/52nd-session/documents/BG-3l-Spatial_Anonymization-E.pdf (2021).
Tedeschi, L. O. et al. Quantification of methane emitted by ruminants: a review of methods. J. Anim. Sci. 100, skac197 (2022).
Ramayo-Caldas, Y. et al. Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. J. Anim. Breed. Genet. 137, 49–59 (2020).
Han, C. S. et al. Invited review: Sensor technologies for real-time monitoring of the rumen environment. J. Dairy Sci. 105, 6379–6404 (2022).
Tullo, E., Finzi, A. & Guarino, M. Review: Environmental impact of livestock farming and precision livestock farming as a mitigation strategy. Sci. Total Environ. 650, 2751–2760 (2019).
Chase, L. E. & Fortina, R. Environmental and economic responses to precision feed management in dairy cattle diets. Agriculture https://doi.org/10.3390/agriculture13051032 (2023).
Mackenzie, S. in Smart Livestock Nutrition 311–336 (Springer, 2023).
Sala, E. et al. The economics of fishing the high seas. Sci. Adv. 4, eaat2504 (2023).
White, T. D. et al. Predicted hotspots of overlap between highly migratory fishes and industrial fishing fleets in the northeast Pacific. Sci. Adv. 5, eaau3761 (2023).
Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).
White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).
McDermott, G. R., Meng, K. C., McDonald, G. G. & Costello, C. J. The blue paradox: preemptive overfishing in marine reserves. Proc. Natl Acad. Sci. 116, 5319–5325 (2019).
Cabral, R. B. et al. Rapid and lasting gains from solving illegal fishing. Nat. Ecol. Evol. 2, 650–658 (2018).
Behivoke, F. et al. Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests. Ecol. Indic. 123, 107321 (2021).
Tilley, A., Dos Reis Lopes, J. & Wilkinson, S. P. PeskAAS: a near-real-time, open-source monitoring and analytics system for small-scale fisheries. PLoS One 15, e0234760 (2020).
Snapir, B., Waine, T. W. & Biermann, L. Maritime vessel classification to monitor fisheries with SAR: demonstration in the North Sea. Remote Sens. 11, 353 (2019).
Sarda, K., CaJacob, D., Orr, N. & Zee, R. Making the invisible visible: precision RF-emitter geolocation from space by the Hawkeye 360 Pathfinder mission. In 32nd Annual AIAA/USU Conference on Small Satellites (AIAA, USU, 2018).
Iacarella, J. C. et al. Application of AIS- and flyover-based methods to monitor illegal and legal fishing in Canada’s Pacific marine conservation areas. Conserv. Sci. Pract. 5, e12926 (2023).
Prayudi, A., Sulistijono, I. A., Risnumawan, A. & Darojah, Z. Surveillance system for illegal fishing prevention on UAV imagery using computer vision. In 2020 International Electronics Symposium (IES) 385–391 (2020).
Bartholomew, D. C. et al. Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries. Biol. Conserv. 219, 35–45 (2018).
Antonucci, F. & Costa, C. Precision aquaculture: a short review on engineering innovations. Aquacult. Int. 28, 41–57 (2020).
Rastegari, H. et al. Internet of Things in aquaculture: a review of the challenges and potential solutions based on current and future trends. Smart Agric. Technol. 4, 100187 (2023).
Cervantes-Godoy, D. et al. The Future of Food and Agriculture: Trends and Challenges Vol. 4 (FAO, 2014).
Turnheim, B. et al. Evaluating sustainability transitions pathways: bridging analytical approaches to address governance challenges. Glob. Environ. Chang. 35, 239–253 (2015).
Dawes, S. S. Stewardship and usefulness: policy principles for information-based transparency. Gov. Inf. Q. 27, 377–383 (2010).
Xie, W. et al. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature https://doi.org/10.1038/s41586-023-05799-x (2023).
Kochupillai, M., Kahl, M., Schmitt, M., Taubenböck, H. & Zhu, X. X. Earth observation and artificial intelligence: understanding emerging ethical issues and opportunities. IEEE Geosci. Remote Sens. Mag. 10, 90–124 (2022).
World Bank. World Development Report 2021: Data for Better Lives (World Bank, 2021).
Sachs, J. D. et al. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2, 805–814 (2019).
Fanzo, J. et al. Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals. Food Policy 104, 102163 (2021).
Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).
Iizumi, T. & Sakai, T. The global dataset of historical yields for major crops 1981–2016. Sci. Data 7, 97 (2020).
Franke, J. A. et al. The GGCMI phase 2 experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels. Geosci. Model Dev. 13, 2315–2336 (2020).
Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).
Müller, C. et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 6, 50 (2019).
The Global Yield Gap and Water Productivity Atlas (GYGA) (Yield Gap, 2022); http://www.yieldgap.org.
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Jackson, N. D., Konar, M., Debaere, P. & Estes, L. Probabilistic global maps of crop-specific areas from 1961 to 2014. Environ. Res. Lett. 14, 094023 (2019).
Ray, D. K. et al. Climate change has likely already affected global food production. PLoS One 14, e0217148 (2019).
International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2000 version 3.0.7. https://doi.org/10.7910/DVN/A50I2T (2019).
International Food Policy Research Institute (IFPRI), International Institute for Applied Systems Analysis (IIASA). Global Spatially-disaggregated crop production statistics data for 2005 version 3.2. https://doi.org/10.7910/DVN/DHXBJX (2016).
International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010 version 2.0. https://doi.org/10.7910/DVN/PRFF8V (2019).
West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).